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Figure 1. Center: Unitree G1 humanoid performing loco-manipulation, walking between tables to place and pick objects for 54 loops with
our RGB-based sim-to-real policy. Surrounding: diverse simulated scenes used for training. Website: https://viral-humanoid.github.io

Abstract

A key barrier to the real-world deployment of humanoid
robots is the lack of autonomous loco-manipulation skills.
We introduce VIRAL, a visual sim-to-real framework that
learns humanoid loco-manipulation entirely in simulation
and deploys it zero-shot to real hardware. VIRAL follows
a teacher-student design: a privileged RL teacher, operat-
ing on full state, learns long-horizon loco-manipulation us-
ing a delta action space and reference state initialization. A
vision-based student policy is then distilled from the teacher
via large-scale simulation with tiled rendering, trained with
a mixture of online DAgger and behavior cloning. We find
that compute scale is critical: scaling simulation to tens of
GPUs (up to 64) makes both teacher and student training
reliable, while low-compute regimes often fail. To bridge
the sim-to-real gap, VIRAL combines large-scale visual do-
main randomization over lighting, materials, camera pa-
rameters, image quality, and sensor delays—with real-to-

sim alignment of the dexterous hands and cameras. De-
ployed on a Unitree G1 humanoid, the resulting RGB-based
policy performs continuous loco-manipulation for up to 54
cycles, generalizing to diverse spatial and appearance vari-
ations without any real-world fine-tuning, and approach-
ing expert-level teleoperation performance. Extensive abla-
tions dissect the key design choices required to make RGB-
based humanoid loco-manipulation work in practice.

1. Introduction
Humanoid robots are often framed as the natural embod-
iment of general-purpose physical intelligence: machines
that could ultimately take on a large fraction of physi-
cal work for society. Yet, despite rapid progress in hard-
ware and control, current humanoids have delivered limited
real, sustained productivity outside of carefully engineered
demos [21]. A core missing piece is autonomous loco-
manipulation—tight coordination of locomotion and ma-
nipulation under onboard perception—over long horizons
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Figure 2. VIRAL teacher-student pipeline. Phase 1: In simulation, a privileged RL teacher policy πteacher receives full-state proprioception
and exteroception of the task information and outputs WBC commands. Phase 2: A vision-based student policy πstudent observes only RGB
images and sim-to-real proprioception and is trained to imitate the teacher policy via DAgger and behavior cloning.

and across diverse environments to accomplish useful tasks.
Most existing humanoid systems either focus on blind loco-
motion [28, 39, 43, 84], static tabletop manipulation without
mobility [41, 45, 77], or rely heavily on human teleopera-
tion [6, 26, 44, 78, 79, 82] or non-onboard sensors [72, 80],
and they rarely demonstrate autonomous loco-manipulation
with onboard sensors in the real world [15, 65, 74].

Recently, there has been an exciting push to replicate the
large language model recipe [1] in robotics, by collecting
large-scale real-world datasets and training “robotic foun-
dation models” from real-world teleoperation data [5, 7, 29,
32, 50, 64, 81]. While it remains unclear whether this path
alone will suffice for general manipulation, it is clear that
mobile manipulation will encounter substantially more vari-
ation than fixed tabletop setups and will therefore demand
far more data [19, 34, 73]. When the mobile platform is a
humanoid, the cost per data point increases even further due
to hardware complexity, higher degrees of freedom, safety
constraints, and the engineering overhead of the teleopera-
tion stack [16]. In other words, if we treat humanoid mobile
manipulation as “just another data problem,” the required
scale may be prohibitively expensive in practice.

Simulation offers an alternative path. Modern GPU-
accelerated, photorealistic simulators can generate orders of
magnitude more data at low marginal cost compared with
human teleoperation [4, 46, 48]. Sim-to-real has become
the de facto approach for legged locomotion [57, 63], where
policies trained in simulation routinely transfer to hard-
ware [13, 27, 38]. In contrast, manipulation is still largely
dominated by imitation learning from real-world data, with
sim-to-real successes typically restricted to tabletop settings
and narrow tasks [2, 10, 24, 41, 62]. Moreover, sim-to-real
locomotion and manipulation are usually studied in isola-
tion: locomotion work often ignores manipulation, and ma-
nipulation work typically assumes a fixed base. In this pa-
per, we aim to answer: Can visual sim-to-real enable useful
humanoid loco-manipulation with onboard perception?

Visual sim-to-real for robotics is not a new idea [2, 3,
17, 25, 30, 33, 42, 62, 65, 75, 76, 83], but we revisit it in the
context of humanoid loco-manipulation and push the sys-
tem to modern scales in simulation fidelity, GPU compute,
and humanoid hardware. Our goal is not to propose yet an-
other novel RL or sim-to-real algorithm, but to provide a
technical recipe on the full stack required to make RGB-
based humanoid loco-manipulation work in practice: what
designs matter, where they fail, and how they interact.

To enable efficient sim-to-real training, we adopt a
teacher-student framework as shown in Figure 2. We first
train an RL teacher policy in simulation with full access
to privileged state, operating on top of a pretrained whole-
body control (WBC) policy [6]. We then distill this teacher
into a vision-based student policy that observes only RGB
images and proprioception accessible on the real robot. The
student is trained with large-scale visual distillation using a
mixture of online DAgger [56] and behavior cloning. We
find that scaling up GPU compute for simulation training is
essential for reliable learning of loco-manipulation skills.

To facilitate visual sim-to-real transfer, on the simula-
tion side, we scale up visual randomization variations, in-
cluding scene assets, lighting, materials, and camera pa-
rameters, with high-fidelity tiled rendering; on the hard-
ware side, we align the simulator and real hardware to best
match each other, including system identification (SysID)
on high-gear-ratio dexterous hands and the alignment of
cameras. Together, these technical elements yield an
end-to-end RGB-based student policy that transfers zero-
shot to the real humanoid robot and executes continuous
loco-manipulation—walking, placing, grasping, and object
transport—over long horizons.

In real-world experiments, VIRAL shows not only the
robustness of the high success rate that is near the human
expert teleoperation performance, but also generalization to
various spatial and scene variations. In simulation experi-
ments, scaling studies, and ablations reveal which key com-
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ponents of the VIRAL framework are most critical for the
full stack to work in practice. Overall, our results suggest
that large-scale visual sim-to-real provides a practical path
toward autonomous humanoid loco-manipulation.

2. Key Elements of VIRAL
Framework Overview To achieve efficient visual sim-
ulation training, the VIRAL controller is trained via teacher-
student privileged learning [9] as shown in Figure 2. We
first train a privileged RL teacher policy with full access
to the privileged state-based inputs and run the simulation
without the compute burden of visual rendering on two 8-
GPU L40S nodes (16 GPUs in total). During this stage, we
carefully design stage-based rewards and initialize environ-
ments from demonstrations to boost RL training. Instead
of training low-level motor skills from scratch, we integrate
the pre-trained WBC policy [6] and make the command for
WBC the action space for the teacher policy. Details of
teacher training are provided in Section 2.1.

After the teacher discovers strong behavior under priv-
ileged information, we distill it into a student policy that
only receives the observations available on the real robot
(i.e., proprioception and RGB images). Visual distillation
is performed using large-scale simulation on eight 8-GPU
L40S nodes (64 GPUs in total) with tiled rendering in Isaac
Lab [48]. The student is trained by a combination of online
DAgger [56] and behavior cloning to predict the teacher’s
action given only access to proprioception and RGB image.
More details of student training are provided in Section 2.2.

To facilitate sim-to-real transfer of the RGB-based stu-
dent policy, we randomize simulation assets, materials,
dome lighting, image effects, camera extrinsics, and sen-
sor delays during student training. We also perform real-to-
sim alignment through system identification (SysID) of the
Unitree 3-fingered dexterous hand and calibration of camera
extrinsics. Finally, we deploy the student policy on the real
robot without any fine-tuning. Using onboard sensor obser-
vations, the student executes continuous loco-manipulation
behaviors—including walking, placing, grasping, and ob-
ject transport—on the Unitree G1 humanoid. Details of
sim-to-real transfer are provided in Section 2.3.

2.1. Key Elements of Teacher Training
Teacher Formulation We formulate the teacher as
a goal-conditioned RL policy. At time step t, the
teacher πteacher(at|opriv

t ) outputs a high-level command
for the low-level WBC policy given privileged obser-
vation. Specifically, the teacher policy outputs at =
(∆vt, ∆ωyaw

t ,∆qarm
t , ∆qfinger

t ) as the command for the
WBC policy [6], where ∆vt, ∆ωyaw

t are delta linear (x, y)
and angular (yaw) velocity commands and ∆qarm

t , ∆qfinger
t

are delta joint targets for arm and finger motors. These com-
mands are passed to the WBC policy [6]. The privileged

observation opriv
t = [oprop-priv

t , oexte-priv
t ] includes privileged

proprioception and exteroception. Proprioception consists
of oprop-priv

t = [vt,ωt,gt, at−1, qt, q̇t, f
finger
t ] where vt,ωt

are base linear and angular velocities, gt is base projected
gravity, at−1 is last action, qt, q̇t are joint positions and ve-
locities, ffinger

t are fingertip forces. As for privileged exte-
roception, we have oexte-priv

t = [et, Tt, Ot] where et is the
current stage, Tt is the placement and lift target, Ot is the
relative transforms of objects and tables to the robot. All
observation terms are specified in Section 7.1. The teacher
is trained with PPO [59] with a custom implementation of
TRL [68] to train across GPUs in a distributed manner.
Teacher Element #1: Reward Design To de-
sign rewards for humanoid loco-manipulation, we segment
the task into a sequence of walking, placing, grasping, and
turning. Therefore, we define four key rewards:
1. Walking toward the objects: rwalk = exp(−4 (∥probot −

pGraspObj∥ − 0.45)2);
2. Placing objects when near tray: rplace = −∥fPlaceObj∥ ∗

1(∥pPlaceObj − ptray∥ < 0.3) where fPlaceObj is the force
between robot finger and the object to be placed;

3. Grasping objects: rgrasp-z = min(hGraspObj − htable, 0.15)
and rgrasp-goal = exp(−10||pGraspObj − pgoal||2);

4. Turning: rturn = −|yrobot − ydesired| where y is the base
yaw heading angle.

Full reward definitions are provided in Section 7.2.

Teacher Element #2: Delta Action Space
Rather than outputting absolute joint targets—as is com-
mon in legged RL locomotion [57]—we adopt a delta
action space. The policy outputs increments that are ac-
cumulated into the WBC command. In practice, this delta
representation significantly accelerates and stabilizes RL
training. An ablation of this choice is shown in Figure 9.

Teacher Element #3: WBC command as API
To reduce reward engineering burden and enable reliable
real-world deployment, the teacher in VIRAL produces
high-level WBC commands rather than learning low-level
motor skills from scratch. We use HOMIE [6] as the under-
lying WBC controller, which provides stable lower-body
locomotion and diverse upper-body poses. The command
space of HOMIE involves velocity and height tracking
commands for locomotion and upper-body joint commands.
We extend this command interface by incorporating finger
actions, yielding the full action space for VIRAL. Note
that VIRAL framework does not have designs overfitting
to specific WBC policy, and can be extended to other
humanoid WBC controllers [44, 78]. With a stable and
robust WBC policy as an API layer, the action space of
VIRAL policy is limited to a safe and reliable region of
humanoid motions, improving deployability.

Teacher Element #4: Reference State
Initialization Learning long-horizon walking-
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Figure 3. Visual randomization on image, lighting, material, and camera-extrinsics randomization for sim-to-real robustness.

Reference State Initialization 

Figure 4. Frames of reference state initialization for teacher RL.

placing-grasping-turning skills for high-DoF humanoids
with RL typically demands heavy reward engineering
still often yields suboptimal or poor sim-to-real transfer.
To mitigate this, we collect 200 teleoperated simulation
demonstrations and use them as a state-initialization buffer
for RL (Figure 4). At every episode reset, we sample a
demonstration snapshot and initialize the scene—robot,
objects, and tables—accordingly, exposing the policy
to diverse rewarding states long before it is capable of
reaching them from scratch. This reference-biased ex-
ploration greatly reduces reliance on brittle reward tuning
and improves sim-to-real transfer, as human-provided
grasping and placement poses offer strong priors. Similar
ideas have appeared in humanoid control [52, 60] and
manipulation [41, 49]. We find this reset strategy to be
essential for training humanoid loco-manipulation, as
shown in the ablation in Figure 9.

2.2. Key Elements of Student Training

Student Element #1: DAgger&BC Mixture. We train the
RGB-based student policy by distilling from the privileged
teacher through a hybrid of online DAgger [56] and behav-
ior cloning (BC). Both procedures share the same MSE ob-
jective, computed over a mixture of teacher- and student-

induced observation distributions:

ρo ≜ αρoπteacher
+ (1− α) ρoπstudent

,

Ldistill = Eot∼ρo

[∥∥πteacher(o
teacher
t )− πstudent(o

student
t )

∥∥2
2

]
,

where ρoπteacher
and ρoπstudent

denote the observation distri-
butions induced by the teacher and student rollouts, re-
spectively. The distinction between DAgger and BC lies
solely in the source of observations: teacher rollouts pro-
vide clean, near-optimal demonstrations that rapidly im-
print strong priors on the student, while student rollouts ex-
pose the learner to states outside the teacher’s ideal distribu-
tion, which is critical for improving error-correction robust-
ness and preventing compounding error during deployment.
This mixed-policy rollout combines the fast initialization of
BC with the state-coverage benefits of DAgger, producing a
more resilient vision-based controller. Ablation of the mix-
ture coefficient α is provided in Figure 11.

Student Element #2: Network Backbone. For the stu-
dent’s vision backbone, we adopt a state-of-the-art image
encoder [61] to extract high-quality RGB features, which
are fused with proprioceptive to the policy head. The re-
sulting student observation ostudent therefore integrates both
visual embeddings and the proprioception available on real
hardware, enabling the policy to reason over rich visual cues
while maintaining grounded low-level awareness. We also
evaluate choices for the student policy head, including a
single-step MLP and a history-aware architecture that in-
corporates temporal context. Ablations of the vision back-
bone and history architecture are shown in Figure 10 and
Figure 12, respectively.
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Student Element #3: Distributed Simulation Learning
System. Large-scale visual simulation is substantially more
expensive than rendering-free physics, typically operating
at least an order of magnitude slower in terms of simulation
throughput. To scale up visual simulation training through-
put, we implement a customized version of TRL [68] with
support of Accelerate [22] for efficient scaling across mul-
tiple GPUs and compute nodes. This implementation pre-
serves the simplicity of single-GPU training while enabling
near-linear scaling to large clusters for high-throughput vi-
sual sim-to-real learning. We identify scaling up GPUs for
both teacher and student training as critical in our ablation
studies in Figure 14 and Figure 15.

2.3. Key Elements of Sim-to-Real Transfer
Sim-to-Real Element #1: SysID for Dexterous Hand.
While modern humanoids increasingly use low–gear ra-
tio motors—reducing the need for motor-level SysID—the
Unitree G1’s 3-fingered dexterous hand employs high gear
ratios, resulting in a substantial sim-to-real mismatch. To
address this, we define a real-world grasp–release prim-
itive and replay the identical action sequence in simula-
tion. We then perform SysID over finger armature, stiffness,
and damping parameters to align simulated joint trajectories
with real measurements. As shown in Figure 5, SysID sig-
nificantly improves the correspondence between simulated
and real joint positions.

Jo
in

t  
Po

s

Before 
Finger 
SysID

After 
Finger 
SysID

Sim Joint Pos Real Joint Pos Target Joint Pos

Figure 5. System identification of the dexterous hand. Real–sim
overlays (top) and joint position trajectories (bottom) before and
after SysID, showing markedly improved alignment.

Real FOV Sim FOV 
(Before Alignment)

Sim FOV 
(After Alignment)

Figure 6. Real-to-sim camera extrinsics alignment. Real view
versus simulated views before and after alignment.

Sim-to-Real Element #2: FOV Alignment and Random-
ization. We match the simulator’s camera intrinsics (focal
length, focus distance, and sensor apertures) to the man-
ufacturer’s specifications. However, the camera extrinsics
of Unitree G1 robots vary across units due to mechanical
tolerances and can even drift over time on the same robot.
To better align simulated and real visual observations, we
perform a lightweight real-to-sim extrinsics calibration by
visually matching rendered and real images (Figure 6). We
further apply extrinsics randomization during training (Fig-

Figure 7. Real-world performance comparison: VIRAL
matches expert-level reliability, outperforms non-experts, and op-
erates faster than the expert teleoperator.

ure 3) to ensure that the student remains robust to hardware-
induced viewpoint differences.
Sim-to-Real Element #3: Visual and Simulation Ran-
domization. To enhance robustness and improve sim-to-
real transfer, we apply extensive visual and physical ran-
domization during training (Figure 3). We randomize im-
age quality (brightness, contrast, hue, saturation, Gaussian
noise, and blur), camera extrinsics to account for small pose
shifts, and camera latency to model transmission delays. We
additionally vary global illumination using dome-light en-
vironments and randomize material and color properties of
floors, tables, objects, and robot components. These per-
turbations significantly improve the policy’s transferability
by preventing overfitting to any specific simulated appear-
ance or lighting condition. Ablation of this randomization
is provided in Figure 13.

3. Real-World Results of VIRAL
In this section, we present real-world humanoid loco-
manipulation results achieved by VIRAL. The following
section (Section 4) analyzes the contribution of each design
choice. Our experiments deploy a 29-DoF Unitree G1 hu-
manoid equipped with 7-DoF three-finger dexterous hands.
Perception is provided by an Intel RealSense D435i, and all
policy inference is performed on a desktop workstation with
an Intel i9-14900K CPU and an NVIDIA RTX 4090 GPU.

3.1. Robustness
We evaluate the robustness of the learned student policy
on a continuous loco-manipulation task in which the hu-
manoid repeatedly walks between two tables, places an ob-
ject, grasps a new object, and turns around. Across 59 con-
secutive real-world trials, VIRAL succeeds in 54, demon-
strating strong reliability under extended deployment.

We also compare VIRAL with two human teleopera-
tors: an expert with over 1000 hours of G1 teleopera-
tion experience and a non-expert teleoperator with approx-
imately one hour of experience. All conditions use the
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Figure 8. Real-world generalization of VIRAL RGB-based policy under variations in tray and object position, robot start pose, table
height and type, tablecloth color, lighting, and object category. Videos are provided in https://viral-humanoid.github.io.

same HOMIE policy, yielding a near-apple-to-apple com-
parison. As shown in Figure 7, the expert attains a 100%
success rate with a 21.4 s cycle time, slightly higher than
the 20.2 s cycle time of VIRAL. Meanwhile, the non-expert
reaches only 73% success with significantly slower execu-
tion. These results show that although expert-level success
remains challenging, VIRAL achieves near–expert success
performance while being faster than the expert, and it sub-
stantially outperforms non-experts in both reliability and ef-
ficiency—highlighting its potential to reduce human work-
load in assisted teleoperation settings.

3.2. Generalization
We assess real-world generalization by systematically vary-
ing the environment along multiple factors, including tray
start position, robot start pose, table height, lighting, table
cloth, table type and color, and object category (Figure 8).
Across these variations, VIRAL consistently completes the
task without additional tuning, indicating strong robustness.
We attribute this behavior to the domain randomization used
during simulation training and the robustness of RL, which
exposes the policy to diverse visual and spatial conditions.
Videos are provided in https://viral-humanoid.github.io.

4. Experiments
In this section, we evaluate the contribution of each design
component of VIRAL, corresponding to the key elements
introduced in Section 2.

4.1. Reference State Initialization for RL
Figure 9 compares training curves with and without ref-
erence state initialization (RSI) [52] from teleoperated
demonstrations. Without RSI, the teacher policy quickly

plateaus with a success rate below 10%, whereas the full
VIRAL teacher with RSI reaches nearly 95% success. RSI
improves exploration by resetting episodes to diverse inter-
mediate states along the task trajectory, so the policy can
practice all stages of the task from the outset rather than
discovering subgoals sequentially.

Figure 9. Ablations of teacher policy training. Training rewards
(left) and success rates (right) for the full method (RSI + delta ac-
tion), without demonstration resets, and without delta action space,
showing that both components are critical for final success.

4.2. Delta versus Absolute Action Space

We compare delta and absolute joint action spaces for the
teacher policy. Unlike much of the legged locomotion RL
literature, which commonly uses absolute joint targets, we
find that a delta action space is crucial for humanoid loco-
manipulation: as shown in Figure 9, only the delta-action
teacher reliably solves the task, while the absolute-action
variant fails to reach high success.

4.3. Vision Backbone

Figure 10 reports the student’s training loss and success
rate. We see that state-of-the-art vision backbones (DI-
NOv3 [61]) yield stronger visual representations and greater
capacity, enabling faster convergence and higher task suc-
cess—i.e., the policy learns the target behaviors more reli-
ably with better visual features.
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Figure 10. Ablation of vision backbone for student policy.

4.4. DAgger versus BC Visual Distillation
We ablate the DAgger-BC mixture by varying the rollout ra-
tio α, defined as the fraction of environments that follow the
teacher policy during data collection (α = 0 corresponds to
pure DAgger on student rollouts, α = 1 to pure BC). As
shown in Figure 11, BC (α = 1) yields fast loss reduc-
tion but produces a brittle policy that fails to correct its own
mistakes and performs poorly in Isaac-to-MuJoCo [48, 67]
and real-world evaluations. Introducing student rollouts
(α = 0.5) slows optimization slightly but substantially im-
proves deployment success rate, so we adopt α = 0.5 as our
default DAgger-BC ratio.Teacher rollout ratio

Figure 11. Ablation of ratio of DAgger/BC of student policy.

4.5. History Architecture
Figure 12 compares a single-step baseline, a feed-forward
history model, and an LSTM under different history
lengths. History-aware models consistently outperform the
single-step baseline, and longer temporal windows provide
additional gains when resources allow.

Ablation history

Figure 12. Ablation of the history architecture of student policy.

4.6. Visual Randomization
Figure 13 presents an ablation of our visual domain ran-
domization. We focus on three dominant components: ma-
terial randomization for table/floor/robot (M), dome-light
randomization (D), and camera-extrinsics randomization
(E), while other factors (image quality, object color, cam-
era delay) provide smaller gains. All policies are evaluated
in IsaacSim [48] with all randomizations enabled; training
variants differ by removing one component at a time (w/o-

M, w/o-D, w/o-E) or using no randomization at all. Suc-
cess rates are normalized by the model trained with all ran-
domizations (set to 1.0) and averaged over 200 episodes.

randomization

Figure 13. Ablation of vi-
sual randomization.

Two trends emerge: (i) turn-
ing off all randomization
causes a large drop in per-
formance (down to 0.649, a
35.1% decrease), and (ii) re-
moving any single compo-
nent also degrades perfor-
mance, indicating that the
randomizations are comple-
mentary and together form
a crucial pipeline for robust
sim-to-real transfer.

4.7. Scaling Compute for Teacher Training
Figure 14 highlights the impact of scaling GPU resources
from 1 to 16 during teacher training. Increasing the number
of GPUs substantially accelerates learning: larger batches
of parallel environments broaden state-space coverage per
unit wall time, enabling the policy to discover rewarding be-
haviors far more quickly. Early training even shows better-
than-linear speedup—for example, reaching a modest suc-
cess rate of ∼0.2 with 4 GPUs takes well under half the time
required with 2 GPUs—reflecting richer on-policy experi-
ence and more diverse rollouts. Beyond speed, scaling has
a pronounced effect on asymptotic performance. With in-
sufficient compute (1–2 GPUs), the teacher plateaus far be-
low the desired performance range and never reaches high
success rates. In contrast, using 8–16 GPUs consistently
drives the policy above 90% success, revealing that large-
scale simulation is not only beneficial but often necessary
for learning long-horizon humanoid loco-manipulation.

Figure 14. Scaling compute for teacher training. Rewards (left)
and success rates (right) for 1–16 GPUs. More GPUs yield faster
convergence and better asymptotic performance.

4.8. Scaling Compute for Student Training
We observe a clear scaling trend for the student policy as
well. Figure 15 plots distillation (DAgger) loss and down-
stream success rate as we increase the number of GPUs
from 1 to 64. Larger-scale training consistently acceler-
ates convergence: the same loss threshold is reached dra-
matically sooner, and the success curve rises much more
steeply. Beyond speed, scaling also improves training sta-
bility: policies trained with more GPUs exhibit smoother
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loss curves and less variance in success rate, especially dur-
ing the early stages when the student is most sensitive to dis-
tribution shift. Interestingly, higher-GPU runs also achieve
slightly higher final success, suggesting that large-scale ex-
perience collection yields richer and more diverse state cov-
erage, which in turn improves robustness. Overall, these
results indicate that substantial computing is not merely a
convenience but a practical requirement for reliable visual
loco-manipulation distillation.

Figure 15. Scaling compute for student policy training. Distil-
lation loss (left) and success rate (right) when training with 1–64
GPUs. Larger GPU counts provide significantly faster conver-
gence, smoother optimization dynamics, and higher final perfor-
mance, highlighting the importance of large-scale parallel simula-
tion for vision-based loco-manipulation.

4.9. Object generalization
We study object-level generalization on the grasping sub-
task under two training regimes: (i) single-object training
on a cylinder only and (ii) multi-object training on ten dis-
tinct objects. At test time, we evaluate on the same ten ob-
jects and report normalized success rates. As shown in Fig-
ure 16, training with multiple objects yields substantially
better generalization—the multi-object policy attains higher
success on every category than the cylinder-only baseline.Object generalization

Figure 16. Ablation of object generalization of teacher policy.

5. Related Work
Sim-to-Real for Locomotion Sim-to-real techniques
have enabled blind locomotion policies trained in simu-
lation to be deployed zero-shot on real legged robots [6,
11, 18, 20, 31, 35–38, 40, 63]. These proprioceptive poli-
cies are robust and agile but lack environmental aware-
ness, making them insufficient for navigation in cluttered
or goal-directed settings. To compensate, some works in-
corporate depth image or LiDAR-based elevation map to
model terrain geometry [13, 43, 47, 55, 69, 84], improving

foot placement but offering limited semantic understand-
ing. Some works [8, 12, 71] combine RGB vision and
language instructions with sim-to-real locomotion policies
for semantic navigation, but rely on high-latency vision-
language-action (VLA) models. VIRAL instead distills
compact, RGB-driven visuomotor policies trained in ran-
domized simulation to support real-time, goal-conditioned
locomotion without sacrificing sim-to-real scalability.

Sim-to-Real for Manipulation Visual sim-to-real has
been a key driver of progress in manipulation. A central
tool is domain randomization: by varying rendering prop-
erties in simulation, policies trained on RGB can transfer
to the real world [53, 58, 66]. This strategy enabled end-
to-end RL for challenging skills—e.g., OpenAI’s Dactyl re-
oriented objects with a five-finger hand using massive ran-
domization and curriculum learning [2, 3], and later works
scaled to tasks like Rubik’s Cube solving and high-speed
rotation [2, 24]. Early attempts that relied on high-fidelity
RGB/depth/point-cloud simulation still struggled with the
reality gap [2, 3, 25, 30, 33, 75, 76]. Recent methods
improve robustness and scalability via a teacher–student
paradigm: a privileged-state teacher is trained first, then a
student is distilled from RGB with randomization [17, 42,
62]. However, prior work largely targets tabletop settings.
We extend this paradigm to humanoid loco-manipulation.

Sim-to-Real for Loco-Manipulation Loco-manipulation
requires a humanoid robot to move through an environ-
ment while simultaneously interacting with objects. It poses
unique challenges for sim-to-real learning. Recent work ex-
plores sim-to-real learning for low-level loco-manipulation
control, using either modular architectures that decouple leg
and arm [6, 14, 42] or end-to-end policies that coordinate
full-body motion [23, 26, 51]. On top of these controllers,
some systems achieve task-level loco-manipulation via im-
itation learning or vision–language–action models [23, 54,
70], but these approaches require large real-world datasets
and often lack robustness. VIRAL bridges both layers by
training an RGB-driven, end-to-end policy entirely in sim-
ulation, enabling zero-shot deployment for humanoid goal-
conditioned loco-manipulation without real-world demon-
strations or large models.

6. Limitations and Discussions
While sim-to-real has demonstrated remarkable success in
isolated capabilities—robust locomotion, geometric per-
ception, and rigid-body manipulation—scaling these meth-
ods to general-purpose loco-manipulation (“locomote any-
where, perceive anything, manipulate everything”) exposes
four critical coverage gaps that current paradigms have yet
to bridge.
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Physics Coverage:
The Physical Diversity Gap Modern simulators theoret-
ically possess the capability to model complex dynamics,
including fluid-structure interactions and deformable bod-
ies. The fundamental bottleneck is not the lack of simu-
lation features, but the scalability of engineering effort re-
quired to ground these features in reality. We can, with
sufficient effort, engineer specific environments to simulate
scooping rice, grasping noodles with tongs, cutting garlic,
hand-crafting sushi, or feeding beans into a coffee machine.
However, each of these scenarios requires bespoke tuning
of material properties and boundary conditions to align with
the real world. The challenge lies in scaling this effort to the
open-ended diversity of daily life: modeling the damping of
every cardboard box, the stiffness of every garment, the fric-
tion of specific oil stains, or the granular mechanics of food
items. The barrier is not that we cannot simulate these in-
teractions, but that the engineering cost to accurately instan-
tiate them for the long tail of real-world physics arguably
exceeds the complexity of collecting real-world data itself.

Task Coverage:
The Long-Tail of Task Generation Even if physics
could be perfectly simulated, the diversity of tasks remains
an unresolved challenge. Constructing a simulation envi-
ronment for a single task (e.g., dishwashing) requires mod-
eling not just object geometries, but their functional af-
fordances, varied states (dirty vs. clean), and interaction
logic. Scaling this to the thousands of distinct chores in
a household environment presents a massive content gen-
eration bottleneck. Furthermore, simulation is limited by
human imagination; we cannot simulate “unknown un-
knowns”—edge cases and task variants that only emerge
during real-world deployment (e.g., adapting to a pet’s in-
terference or accommodating a human user with mobility
constraints). Current asset taxonomies and generative pro-
cedural pipelines fail to capture this functional breadth.

Reward and Policy Coverage:
The Reward Engineering Bottleneck Defining “RL-
friendly” reward functions that are both dense enough to
guide exploration and sparse enough to prevent specifi-
cation gaming is a delicate art that does not scale. In
practice, we observe a tension between under-exploration
(where dense, shaped rewards bias the policy toward lo-
cal optima or simulator exploits) and over-exploration
(where sparse rewards fail to bootstrap learning in high-
dimensional spaces). For a single task, tuning these re-
wards to find the “Goldilocks” regime is feasible. How-
ever, manually designing robust reward functions for thou-
sands of distinct tasks is intractable. This highlights a cru-
cial trade-off: while sim-to-real offers scalable data gen-
eration, it demands high upfront engineering effort. In con-

trast, imitation learning moves the burden to data collection.
As it stands, a few days of high-quality teleoperation data
can often outperform months of sim-to-real engineering for
specific tasks, primarily because the “reward” is implicitly
provided by the human demonstrator, bypassing the speci-
fication problem entirely.

Hardware Coverage:
The Hardware-Simulation Gap Finally, a distinct gap
remains between the idealized actuation in simulation and
the reality of current humanoid hardware. While quasi-
direct drive (QDD) actuators for locomotion are relatively
well-modeled, dexterous manipulation hardware often suf-
fers from unmodeled friction, backlash, thermal throttling,
and sensor noise. Simulation policies that rely on precise
finger positioning or force feedback often fail to transfer to
hardware that lacks the requisite reliability and precision,
limiting the complexity of tasks that can be genuinely at-
tempted in the real world.

Outlook These four gaps suggest that while sim-to-real
will retain a critical role in robotics—particularly for
safe, stable evaluation and solving skills with bounded
state-spaces—scaling it to solve general-purpose loco-
manipulation is likely out of reach for the near future. The
field has successfully identified the sweet spot for sim-to-
real in locomotion: where aggressive randomization of lim-
ited parameters (terrain, mass) and carefully-designed re-
ward functions produce robust policies that generalize well.
However, the equivalent sweet spot for manipulation re-
mains undiscovered, as the complexity of contact physics
and semantic diversity in manipulation vastly exceeds that
of locomotion tasks.

We believe the path forward involves redefining the role
of simulation within a broader data ecosystem. Rather
than forcing simulation to generate the entire distribution
of the real world, the next frontier lies in integrating sim-
to-real with the rapidly maturing stacks of real-world imita-
tion learning and foundation models. Discovering this syn-
ergy—where simulation complements rather than replaces
real-world learning—is the most exciting direction for the
future of general-purpose loco-manipulation.
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Krähenbühl. Learning by cheating. In Conference on robot
learning, pages 66–75. PMLR, 2020. 3

[10] Yuanpei Chen, Chen Wang, Yaodong Yang, and C Karen
Liu. Object-centric dexterous manipulation from human mo-
tion data. arXiv preprint arXiv:2411.04005, 2024. 2

[11] Zixuan Chen, Xialin He, Yen-Jen Wang, Qiayuan Liao, Yan-
jie Ze, Zhongyu Li, S Shankar Sastry, Jiajun Wu, Koushil
Sreenath, Saurabh Gupta, et al. Learning smooth humanoid
locomotion through lipschitz-constrained policies. arXiv
preprint arXiv:2410.11825, 2024. 8

[12] An-Chieh Cheng, Yandong Ji, Zhaojing Yang, Zaitian
Gongye, Xueyan Zou, Jan Kautz, Erdem Bıyık, Hongxu
Yin, Sifei Liu, and Xiaolong Wang. Navila: Legged robot
vision-language-action model for navigation. arXiv preprint
arXiv:2412.04453, 2024. 8

[13] Xuxin Cheng, Kexin Shi, Ananye Agarwal, and Deepak
Pathak. Extreme parkour with legged robots. arXiv preprint
arXiv:2309.14341, 2023. 2, 8

[14] Xuxin Cheng, Yandong Ji, Junming Chen, Ruihan Yang, Ge
Yang, and Xiaolong Wang. Expressive whole-body con-
trol for humanoid robots. arXiv preprint arXiv:2402.16796,
2024. 8

[15] Jeremy Dao, Helei Duan, and Alan Fern. Sim-to-real learn-
ing for humanoid box loco-manipulation. In 2024 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 16930–16936. IEEE, 2024. 2

[16] Kourosh Darvish, Luigi Penco, Joao Ramos, Rafael Cis-
neros, Jerry Pratt, Eiichi Yoshida, Serena Ivaldi, and Daniele
Pucci. Teleoperation of humanoid robots: A survey. IEEE
Transactions on Robotics, 39(3):1706–1727, 2023. 2

[17] Shengliang Deng, Mi Yan, Songlin Wei, Haixin Ma, Yuxin
Yang, Jiayi Chen, Zhiqi Zhang, Taoyu Yang, Xuheng Zhang,
Wenhao Zhang, et al. Graspvla: a grasping foundation model
pre-trained on billion-scale synthetic action data. arXiv
preprint arXiv:2505.03233, 2025. 2, 8

[18] Helei Duan, Ashish Malik, Mohitvishnu S Gadde, Jeremy
Dao, Alan Fern, and Jonathan Hurst. Learning dynamic
bipedal walking across stepping stones. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 6746–6752. IEEE, 2022. 8

[19] Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha:
Learning bimanual mobile manipulation with low-cost
whole-body teleoperation. arXiv preprint arXiv:2401.02117,
2024. 2

[20] Xinyang Gu, Yen-Jen Wang, Xiang Zhu, Chengming Shi,
Yanjiang Guo, Yichen Liu, and Jianyu Chen. Advanc-
ing humanoid locomotion: Mastering challenging terrains
with denoising world model learning. arXiv preprint
arXiv:2408.14472, 2024. 8

[21] Zhaoyuan Gu, Junheng Li, Wenlan Shen, Wenhao Yu,
Zhaoming Xie, Stephen McCrory, Xianyi Cheng, Abdulaziz
Shamsah, Robert Griffin, C Karen Liu, et al. Humanoid
locomotion and manipulation: Current progress and chal-
lenges in control, planning, and learning. arXiv preprint
arXiv:2501.02116, 2025. 1

[22] Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp
Schmid, Zachary Mueller, Sourab Mangrulkar, Marc Sun,
and Benjamin Bossan. Accelerate: Training and inference
at scale made simple, efficient and adaptable. https:
//github.com/huggingface/accelerate, 2022.
5

[23] Huy Ha, Yihuai Gao, Zipeng Fu, Jie Tan, and Shuran Song.
Umi on legs: Making manipulation policies mobile with
manipulation-centric whole-body controllers. arXiv preprint
arXiv:2407.10353, 2024. 8

[24] Ankur Handa, Arthur Allshire, Viktor Makoviychuk, Aleksei
Petrenko, Ritvik Singh, Jingzhou Liu, Denys Makoviichuk,
Karl Van Wyk, Alexander Zhurkevich, Balakumar Sundar-
alingam, et al. Dextreme: Transfer of agile in-hand ma-
nipulation from simulation to reality. In 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 5977–5984. IEEE, 2023. 2, 8

10

https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate


[25] Nicklas Hansen and Xiaolong Wang. Generalization in re-
inforcement learning by soft data augmentation. In 2021
IEEE International Conference on Robotics and Automation
(ICRA), pages 13611–13617. IEEE, 2021. 2, 8

[26] Tairan He, Zhengyi Luo, Xialin He, Wenli Xiao, Chong
Zhang, Weinan Zhang, Kris Kitani, Changliu Liu, and
Guanya Shi. Omnih2o: Universal and dexterous human-
to-humanoid whole-body teleoperation and learning. arXiv
preprint arXiv:2406.08858, 2024. 2, 8

[27] Tairan He, Chong Zhang, Wenli Xiao, Guanqi He,
Changliu Liu, and Guanya Shi. Agile but safe: Learning
collision-free high-speed legged locomotion. arXiv preprint
arXiv:2401.17583, 2024. 2

[28] Tairan He, Wenli Xiao, Toru Lin, Zhengyi Luo, Zhenjia
Xu, Zhenyu Jiang, Jan Kautz, Changliu Liu, Guanya Shi,
Xiaolong Wang, et al. Hover: Versatile neural whole-
body controller for humanoid robots. In 2025 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 9989–9996. IEEE, 2025. 2

[29] Yingdong Hu, Fanqi Lin, Pingyue Sheng, Chuan Wen, Ji-
acheng You, and Yang Gao. Data scaling laws in imi-
tation learning for robotic manipulation. arXiv preprint
arXiv:2410.18647, 2024. 2

[30] Yangru Huang, Peixi Peng, Yifan Zhao, Guangyao Chen,
and Yonghong Tian. Spectrum random masking for gener-
alization in image-based reinforcement learning. Advances
in Neural Information Processing Systems, 35:20393–20406,
2022. 2, 8

[31] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario
Bellicoso, Vassilios Tsounis, Vladlen Koltun, and Marco
Hutter. Learning agile and dynamic motor skills for legged
robots. Science Robotics, 4(26):eaau5872, 2019. 8

[32] Physical Intelligence, Kevin Black, Noah Brown, James
Darpinian, Karan Dhabalia, Danny Driess, Adnan Esmail,
Michael Equi, Chelsea Finn, Niccolo Fusai, et al. π0. 5:
a vision-language-action model with open-world generaliza-
tion, 2025. URL https://arxiv. org/abs/2504.16054, 1(2):3.
2

[33] Yunfan Jiang, Chen Wang, Ruohan Zhang, Jiajun Wu, and
Li Fei-Fei. Transic: Sim-to-real policy transfer by learning
from online correction. arXiv preprint arXiv:2405.10315,
2024. 2, 8

[34] Yunfan Jiang, Ruohan Zhang, Josiah Wong, Chen Wang,
Yanjie Ze, Hang Yin, Cem Gokmen, Shuran Song, Jiajun
Wu, and Li Fei-Fei. Behavior robot suite: Streamlining real-
world whole-body manipulation for everyday household ac-
tivities. arXiv preprint arXiv:2503.05652, 2025. 2

[35] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Ma-
lik. Rma: Rapid motor adaptation for legged robots. arXiv
preprint arXiv:2107.04034, 2021. 8

[36] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen
Koltun, and Marco Hutter. Learning quadrupedal locomotion
over challenging terrain. Science robotics, 5(47):eabc5986,
2020.

[37] Zhongyu Li, Xuxin Cheng, Xue Bin Peng, Pieter Abbeel,
Sergey Levine, Glen Berseth, and Koushil Sreenath. Rein-
forcement learning for robust parameterized locomotion con-

trol of bipedal robots. In 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 2811–2817.
IEEE, 2021.

[38] Zhongyu Li, Xue Bin Peng, Pieter Abbeel, Sergey Levine,
Glen Berseth, and Koushil Sreenath. Reinforcement learning
for versatile, dynamic, and robust bipedal locomotion con-
trol. The International Journal of Robotics Research, 44(5):
840–888, 2025. 2, 8

[39] Qiayuan Liao, Takara E Truong, Xiaoyu Huang, Guy Tevet,
Koushil Sreenath, and C Karen Liu. Beyondmimic: From
motion tracking to versatile humanoid control via guided dif-
fusion. arXiv preprint arXiv:2508.08241, 2025. 2

[40] Qiayuan Liao, Bike Zhang, Xuanyu Huang, Xiaoyu Huang,
Zhongyu Li, and Koushil Sreenath. Berkeley humanoid:
A research platform for learning-based control. In 2025
IEEE International Conference on Robotics and Automation
(ICRA), pages 2897–2904. IEEE, 2025. 8

[41] Toru Lin, Kartik Sachdev, Linxi Fan, Jitendra Malik, and
Yuke Zhu. Sim-to-real reinforcement learning for vision-
based dexterous manipulation on humanoids. arXiv preprint
arXiv:2502.20396, 2025. 2, 4

[42] Minghuan Liu, Zixuan Chen, Xuxin Cheng, Yandong Ji, Ri-
Zhao Qiu, Ruihan Yang, and Xiaolong Wang. Visual whole-
body control for legged loco-manipulation. arXiv preprint
arXiv:2403.16967, 2024. 2, 8

[43] Junfeng Long, Junli Ren, Moji Shi, Zirui Wang, Tao Huang,
Ping Luo, and Jiangmiao Pang. Learning humanoid loco-
motion with perceptive internal model. In 2025 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 9997–10003. IEEE, 2025. 2, 8

[44] Zhengyi Luo, Ye Yuan, Tingwu Wang, Chenran Li, Sirui
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7. Training Details
7.1. Observation Details
Table 1 summarizes the observation terms and their corre-
sponding dimensions.

State term Dimensions

Base linear velocity 3
Base angular velocity 3
Projected gravity 3
Actions 31
Stage 5
Delta actions 11
DoF position 43
DoF velocity 43
Placement position 2
Table–pelvis transform 9
Finger-tip forces for hold object 12
Hold object transform 9
Hold object–hand transform 9
Target pre-place position 3
Finger-tip forces for grasp object 12
Grasp object transform 9
Grasp object–hand transform 9
Target lift position 3
HOMIE commands 7

Single-step total dim 226

Table 1. Observation dimensions for teacher.

Table 2 lists the observation terms and their correspond-
ing dimensions. In addition to these state observations, we
feed an RGB image of size 108 × 192 into the vision en-
coder. The resulting 128-dimensional visual feature is con-
catenated with the state observations and then passed to the
policy head.

State term Dimensions

Base angular velocity 3
Projected gravity 3
Actions 31
DoF position (w/o fingers) 29
DoF velocity (w/o fingers) 29
Delta actions 11
HOMIE commands 7

Single-step total dim 113

Table 2. Observation dimensions for student.

7.2. Reward Details
A single place–pickup cycle is decomposed into five stages:
(1) walking toward the object; (2) moving the arm and hand
to a pre-place pose; (3) placing the object; (4) grasping and
lifting the next object; and (5) turning. Repeating this se-
quence produces a long-horizon loco-manipulation loop. At
each step, the total reward is a stage-weighted sum

rt =

4∑
i=0

wi1[st = i]r
(i)
t , wi > 0,

and stage transitions are governed by stage-specific ad-
vancement and completion criteria. Table 3 instantiates r(s)

with stage-dependent shaping terms for teacher policy.

7.3. Hyperparameters Details
Table 4 lists the PD gains used for the Unitree G1 robot
equipped with 3-finger dexterous hands.

Table 5 lists the hyperparamters for teacher policy
trained by PPO [59].

Table 6 lists the hyperparameters for student policy
trained by the mixture of DAgger [56] and Behavior
Cloning.

7.4. Domain Randomization
Table 7 summarizes all randomizations used during policy
training, including image quality, dome lighting, materials,
table properties, and camera extrinsics.
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Term Expression Weight Stage(s)

Termination / generic penalties
Termination 1{termination} −2000.0 0–4
Delta action rate ∥∆at∥22 −0.01 0–4
DoF velocity ∥q̇∥22 −0.5 0–4
DoF acceleration ∥q̈∥22 −3.0× 10−6 0–4
Torque limits ∥τ∥22 −0.001 0–4
Output smoothness ∥πt − πt−1∥22 −9.0 0–4
Finger primitive limits

∣∣clip(ufinger, [l, u])− ufinger
∣∣ −20.0 0–4

Fast right-arm velocity ∥q̇right arm∥22 −80.0 0–4
Finger qvel, when contacting ground with single-foot ∥q̇finger∥2 1single-foot −3000.0 1–3
Arm qvel, when contacting ground with single-foot ∥q̇right arm∥2 1single-foot −1300.0 1–3

Heading / command shaping
Heading toward object

(
(ψGraspObj − ψrobot)/π

)2 −10000.0 0

Object in view 1[yright hand > yGraspObj − 0.1] + 1[yleft hand < yGraspObj + 0.1] −1.0 0

Large linear vx command
∑

max
(
0, |vcmd

x | − 0.5
)

−20.0 0–4
Large linear vy command

∑
max

(
0, |vcmd

y | − 0.5
)

−20.0 0–4
Large angular ω command

∑
max

(
0, |ωcmd| − 0.5

)
−20.0 0–4

Large upper-body actions
∑

max
(
0, |uupper| − 2π

)
−20.0 0–4

Zero linear vx, linear vy , angular ω cmd |vcmd
x |+ |vcmd

y |+ |ωcmd| −12.0 1–3
Zero linear vx, linear vy cmd |vcmd

x |+ |vcmd
y | −4.0 4

Task / object-centric rewards
Robot-Object distance exp(−4 (∥probot − pGraspObj∥ − 0.45)2) 2.0 0–4
Upper-body actions (pose) ∥qright arm∥22 −1.0 0

Keep hand closed exp
(
−4 (ufinger − uclose)

2
)

9.0 0–1, 3–4
Place objects when near tray −∥fPlaceObj∥ ∗ 1(∥pPlaceObj − ptray∥ < 0.3) 10.0 0–1
Holding object exp

(
−4∥pPlaceObj − phand∥2

)
1.0 0–4

Hand–object distance exp
(
−10maxk ∥p(k)finger − pGraspObj∥2

)
20.0 3–4

Grasp based on obj–finger dir − d̂⊤
thumbd̂index 5.0 3–4

Grasp force
∑

∥fGraspObj-hand∥ 1.0 3–4
Lift goal distance exp(−10||pGraspObj − pgoal||2) 10.0 3–4
Lift z min(hGraspObj − htable, 0.15) 200.0 3–4
Turn around −|yrobot − ydesired| 15.0 4

Right-arm qpos tracking (hold) exp
(
−4∥qright arm − q∗

Place∥2
)

5.0 0–2
Right-arm qpos tracking (front) exp

(
−4∥qright arm − q∗

Grasp∥2
)

25.0 3–4
Finger qvel during right-arm qvel exp

(
−6∥q̇arm∥2∥q̇finger∥2

)
15.0 1–4

Object–table contact move ∥vGraspObj,xy∥ 1table-contact −1000.0 1–4
Object relative move (hand–obj vz) |vzGraspObj − vzhand| 1in-grasp −3000.0 1–3
Object lean during pick |ϕGraspObj|+ |θGraspObj| −500.0 0–3
Object non–z velocity during pick ∥vGraspObj,xy∥2 −500.0 0–3

Table 3. Reward components, expressions, weights, and the stages (0–4) where each term is applied.
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Joint Kp [N·m/rad] Kd [N·m·s/rad]

hip yaw 150 2.0
hip roll 150 2.0
hip pitch 150 2.0
knee 200 4.0
ankle pitch 40 2.0
ankle roll 40 2.0
waist yaw 250 5.0
waist roll 250 5.0
waist pitch 250 5.0
shoulder pitch 100 5.0
shoulder roll 100 5.0
shoulder yaw 40 2.0
elbow 40 2.0
wrist roll 20 2.0
wrist pitch 20 2.0
wrist yaw 20 2.0
hand index 0.5 0.1
hand middle 0.5 0.1
hand thumb 1 0.5 0.1
hand thumb 2 0.5 0.1
hand thumb 0 2.0 0.1

Table 4. Joint-space PD gains (Kp, Kd) used in the low-level
controller.

Hyperparameters Values

Number of environments 32768 (2048*8GPUs*2Nodes)
Discount factor (γ) 0.998
Learning rate 0.00002
Entropy coefficient 0.01
Value loss coefficient 1
Init noise std (RL) 0.5
MLP size [512, 256, 128]

Table 5. Hyperparameters for teacher policy.

Hyperparameters Values

Number of environments 65535 (1024*8GPUs*8Nodes)
Number of steps per environment 1
Learning rate 0.0002

Table 6. Hyperparameters for student policy.
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Table 7. Comprehensive domain randomization parameters during training

Parameter Probability Distribution

Image Augmentation
Brightness 0.25 ∼ U(0.7, 2)
Contrast 0.25 ∼ U(0.5, 1.5)
Hue 0.5 ∼ U(−0.1, 0.1)
Saturation 0.25 ∼ U(0.5, 2)
Gaussian Noise Std 0.25 ∼ U(0.0, 0.15)
Gaussian Blur Kernel Size 0.25 ∼ U(3, 5)
Gaussian Blur Sigma 0.25 ∼ U(0.1, 1.5)

Lighting
Dome Light Intensity 1.0 ∼ U(800, 2000)
Dome Light Yaw Rotation 1.0 ∼ U(−π, π)
Dome Light Texture Map 1.0 ∼ U(texture maps)

(Indoor, Clear, Cloudy, Night, Studio)

Material Randomization
Robot Material - Roughness 1.0 ∼ U(0.0, 0.8)
Robot Material - Metallic 1.0 ∼ U(0.0, 0.8)
Robot Material - Specular 1.0 ∼ U(0.0, 0.8)
Floor Material Texture 1.0 ∼ U(texture maps)

(Wood, Carpet, Masonry, Metals,
Natural, Plastics, Stone, Wall Board)

Table Material Texture 1.0 ∼ U(texture maps)
(Wood)

Object Material Texture 1.0 ∼ U(texture maps)
(All Base Materials)

Table Physical Properties
Table Height (m) 1.0 ∼ U(0.65, 0.6775)
Table Depth (m) 1.0 ∼ U(0.7, 0.75)
Table Width (m) 1.0 ∼ U(1.4, 1.6)
Table Thickness (m) 1.0 ∼ U(0.035, 0.04)

Camera Extrinsics
Position Noise - X (m) 1.0 ∼ U(−0.02, 0.02)
Position Noise - Y (m) 1.0 ∼ U(−0.05, 0.05)
Position Noise - Z (m) 1.0 ∼ U(−0.02, 0.02)
Rotation Noise - Roll (rad) 1.0 ∼ U(−0.05, 0.05)
Rotation Noise - Pitch (rad) 1.0 ∼ U(−0.1, 0.1)
Rotation Noise - Yaw (rad) 1.0 ∼ U(−0.05, 0.05)
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